stochastic model - определение. Что такое stochastic model
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое stochastic model - определение

Найдено результатов: 3439
Stochastic Models         
  • Wiener]] or [[Brownian motion]] process on the surface of a sphere. The Wiener process is widely considered the most studied and central stochastic process in probability theory.<ref name="doob1953stochasticP46to47"/><ref name="RogersWilliams2000page1"/><ref name="Steele2012page29"/>
  • red}}).
  • Mathematician [[Joseph Doob]] did early work on the theory of stochastic processes, making fundamental contributions, particularly in the theory of martingales.<ref name="Getoor2009"/><ref name="Snell2005"/> His book ''Stochastic Processes'' is considered highly influential in the field of probability theory.<ref name="Bingham2005"/>
  • [[Norbert Wiener]] gave the first mathematical proof of the existence of the Wiener process. This mathematical object had appeared previously in the work of [[Thorvald Thiele]], [[Louis Bachelier]], and [[Albert Einstein]].<ref name="JarrowProtter2004"/>
  • A single computer-simulated '''sample function''' or '''realization''', among other terms, of a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space.
MATHEMATICAL OBJECT USUALLY DEFINED AS A COLLECTION OF RANDOM VARIABLES
Random function; Theory of random functions; Stochastic processes; Random process; Stochastic transition function; Heterogeneous process; Stochastic effects; Stochastic Process; Random signal; Random system; Random processes; Stochastic model; Stochastic systems; Homogeneous process; Stochastic models; Kolmogorov extension; Stochastic system; Process (stochastic); Discrete-time stochastic process; Stochastic dynamics; Stochastic deaths; Stochastic processe; Stochastic Processes; Real-valued stochastic process; Version (probability theory)
Stochastic Models is a peer-reviewed scientific journal that publishes papers on stochastic models. It is published by Taylor & Francis.
Stochastic block model         
  • An example of the assortative case for the stochastic block model.
The stochastic block model is a generative model for random graphs. This model tends to produce graphs containing communities, subsets of nodes characterized by being connected with one another with particular edge densities.
Stochastic modelling (insurance)         
PROBABILITY MODELLING TOOL
Stochastic modeling; Stochastic modelling
"Stochastic" means being or having a random variable. A stochastic model is a tool for estimating probability distributions of potential outcomes by allowing for random variation in one or more inputs over time.
Stochastic process         
  • Wiener]] or [[Brownian motion]] process on the surface of a sphere. The Wiener process is widely considered the most studied and central stochastic process in probability theory.<ref name="doob1953stochasticP46to47"/><ref name="RogersWilliams2000page1"/><ref name="Steele2012page29"/>
  • red}}).
  • Mathematician [[Joseph Doob]] did early work on the theory of stochastic processes, making fundamental contributions, particularly in the theory of martingales.<ref name="Getoor2009"/><ref name="Snell2005"/> His book ''Stochastic Processes'' is considered highly influential in the field of probability theory.<ref name="Bingham2005"/>
  • [[Norbert Wiener]] gave the first mathematical proof of the existence of the Wiener process. This mathematical object had appeared previously in the work of [[Thorvald Thiele]], [[Louis Bachelier]], and [[Albert Einstein]].<ref name="JarrowProtter2004"/>
  • A single computer-simulated '''sample function''' or '''realization''', among other terms, of a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space.
MATHEMATICAL OBJECT USUALLY DEFINED AS A COLLECTION OF RANDOM VARIABLES
Random function; Theory of random functions; Stochastic processes; Random process; Stochastic transition function; Heterogeneous process; Stochastic effects; Stochastic Process; Random signal; Random system; Random processes; Stochastic model; Stochastic systems; Homogeneous process; Stochastic models; Kolmogorov extension; Stochastic system; Process (stochastic); Discrete-time stochastic process; Stochastic dynamics; Stochastic deaths; Stochastic processe; Stochastic Processes; Real-valued stochastic process; Version (probability theory)
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner.
Stochastic optimization         
Stochastic optimization (SO) methods are optimization methods that generate and use random variables. For stochastic problems, the random variables appear in the formulation of the optimization problem itself, which involves random objective functions or random constraints.
Stochastic quantum mechanics         
Stochastic quantum mechanics (or the stochastic interpretation) is an interpretation of quantum mechanics.
Stochastic frontier analysis         
Stochastic frontier analysis (SFA) is a method of economic modeling. It has its starting point in the stochastic production frontier models simultaneously introduced by Aigner, Lovell and Schmidt (1977) and Meeusen and Van den Broeck (1977).
Stochastic control         
SUBFIELD OF CONTROL THEORY
Certainty equivalence principle; Stochastic singular control; Certainty equivalence (control theory); Stochastic filtering; Stochastic control theory; Certainty equivalence property; Certainty equivalence; Stochastic filter
Stochastic control or stochastic optimal control is a sub field of control theory that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a Bayesian probability-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables.
Stochastic partial differential equation         
PARTIAL DIFFERENTIAL EQUATIONS VIA RANDOM FORCE TERMS AND COEFFICIENTS
Stochastic partial differential equations
Stochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations.
Dynamic stochastic general equilibrium         
MACROECONOMIC METHOD APPLYING GENERAL EQUILIBRIUM THEORY AND MICROECONOMIC PRINCIPLES TO POSTULATE ECONOMIC PHENOMENA, E.G. ECONOMIC GROWTH, BUSINESS CYCLES, POLICY EFFECTS OR MARKET SHOCKS
Dsge; DSGE; Stochastic dynamic general equilibrium; DSGE model; Dynamic Stochastic General Equilibrium
Dynamic stochastic general equilibrium modeling (abbreviated as DSGE, or DGE, or sometimes SDGE) is a macroeconomic method which is often employed by monetary and fiscal authorities for policy analysis, explaining historical time-series data, as well as future forecasting purposes.Vitek, F.